Nuclear means catastrophe: The lesson of Fukushima

Image removed.

People are tested for radiation exposure near Fukushima. 

By Daniel Tanuro

March 17, 2011 -- International Viewpoint via Climate and Capitalism -- What has happened was entirely predictable: yet another major nuclear “accident”. At the time of writing, it is not yet certain that it will take on the dimensions of a disaster similar to Chernobyl, but that is the direction in which things, alas, look set to evolve. But whether it develops into a major disaster or not, we are once again faced with evidence that nuclear technology can never be 100% secure.

The risks are so frightening that the conclusion is obvious: it is imperative to abandon nuclear energy, and to do so as quickly as possible. This is the first lesson of the unfolding crisis at the Fukushima Daiichi nuclear powerplant, one which raises absolutely fundamental social and political questions, requiring a real debate throughout society about an alternative to the capitalist model of infinite growth.

A dangerous technology

Windscale in 1957, Three Mile Island in 1979, Chernobyl in 1986, Tokai Mura in 2000 and now Fukushima. The list of accidents at nuclear powerplants continues to grow. It simply could not be otherwise and it is not necessary to be a doctor of nuclear physics to understand why.

A nuclear plant works in a similar way to a kettle, with the element in a kettle corresponding to the fuel rods in a nuclear plant. If there is no water in the kettle and the elements heat up, there is a problem, and in much the same way the central fuel rods must be continuously submerged in water. The steam produced by the resulting boiling water turns the turbines that generate electricity. The plant consumes large quantities of water, the circulation of which is ensured by pumps.

If the pumps fail, the water runs out and the overheated rods start to deteriorate. If water is not added quickly, the heat produced by the reaction is such that the rods melt and fall to the bottom of the tank (which corresponds to the chamber of a kettle). This tank is in turn enclosed in a double ring of security; we all recognise the outer sillouette of the reactor. If this does not withstand the intense heat of molten rods and it cracks, radioactivity is released into the environment, with fatal consequences.

A fragile technology

The reaction that occurs in a powerplant is a chain reaction: uranium nuclei are bombarded with neutrons, and when it absorbs a neutron, a uranium nucleus splits in two and releases a large amount of energy (nuclear fission) while also releasing more neutrons, and each of these can cause the fission of another uranium nucleus. Once the reaction starts, it continues all by itself. The only way to control and monitor the temperature is to insert between the fuel rods bars made of alloy that can absorb neutrons without causing fission. This can cool the core of the reactor. But this cooling takes some time, during which the fuel rods must remain bathed in water, otherwise they might overheat.

The proponents of nuclear power repeat tirelessly that the device is extremely safe, particularly because, in the case of failure of the mains supply, the pumps can be supplied with energy thanks to emergency generators. The accident in Fukushima shows that those assurances are not worth much because of the earthquake. There was therefore no more power to operate the pumps. The generators should have started automatically, but unfortunately they were out of order, drowned by the tsunami. The cooling water is insufficient, as the fuel rods were exposed from 1.8 metres to over three metres (for a total length of 3.71 metres). This overheating caused a chemical reaction (electrolysis of water), which produced hydrogen. The technicians then released the vapour to avoid the explosion of the tank, but hydrogen apparently then exploded in the reactor, causing the collapse of the dome of the building, and steam was released into the environment. This scenario was apparently repeated in a second reactor.

Just like Chernobyl

The distribution of freshwater having been interrupted by the tsunami, the technicians used the water from the nearby sea. Several US experts have said that this was typically an “act of desperation”. According to them, it evokes the vain attempts to avoid the melting of the core of the reactor at Chernobyl, when employees of the plant and heroic volunteers poured sand and concrete onto the reactor, paying with their lives. The level of radioactivity measured 80 kilometres from Fukushima is already more than 400 times the permissible levels. Six brave Japanese journalists armed with Geiger counters visited Futaba Town Hall, located 2 kilometres from the plant and found that the radioactivity levels exceeded the measuring capacity of some of their devices! Currently, it is estimated that a Japanese citizen is receiving every hour a dose of radioactivity considered acceptable in one year.

As the French network Sortir du nucléaire said in a statement, “We are [supposed] to believe that a dramatically high level of radioactivity in a wide area around the plant, including the health consequences, does not have serious consequences for health.” We should not believe  statements about immunity to the fallout: the precedent of Chernobyl showed that a radioactive cloud could contaminate vast regions. Everything depends on the force with which the particles are sent into the atmosphere. In the case of a very violent explosion, the radioactive elements may rocket to the altitude of jet streams, the strong winds that prevail at high altitudes. In that case, the fallout could affect areas far removed from Fukushima.

Two agonising questions

The radioactivity comes mainly from two elements: Iodine 131 and Cesium 137. Both are highly carcinogenic, but the former has a lifetime in the atmosphere of about 80 days, while the second remains radioactive for about 300 years. On March 13, 2011, more than 200,000 people were evacuated. The authorities decreed an exclusion zone of 20 kilometres around the first reactor in Fukushima, and 10 kilometres of the latter. The presence of Cesium 137 is particularly worrying.

Precise information is lacking. Tokyo Electric Power Company (TEPCO) and the Japanese authorities are more than likely hiding part of the truth. The two most worrying questions which arise are whether the fission of the rods is controlled or if it continues, on the one hand, and also if the structure containing the tank will blow up. According to Ken Bergeron, a nuclear physicist who has worked on simulations of accidents in powerplants, this structure “is certainly stronger than Chernobyl, but much less so than Three Mile Island".

Specialists are not disguising their concern: “If they do not regain control of it all, we will move from partial melting to a full meltdown, it will be a total disaster”, said one expert (Le Monde, March 13, 2011).

But the worst of all would be the meltdown of the core of the second reactor, which exploded on March 13. Indeed, the fuel is MOX, a mixture of depleted uranium oxide and plutonium 239. Plutonium 239 is in fact a waste product of conventional uranium powerplants. Its radioactivity is extremely high and its “half life” (the number of years needed to reduce by half the level of radioactivity) is estimated at 24,000 years. The Japanese are familiar with this element and its fearsome consequences: the nuclear bomb dropped on Nagasaki at the end of World War II was based on Plutonium 239.

An unacceptable risk

After the Chernobyl disaster, nuclear advocates have said that poor Soviet technology, poor safety standards and the bureaucratic nature of the system were the basis of the accident. If we are to believe them, nothing similar could occur to plants based on good capitalist technology, especially not in “democratic” countries where the legislature shall take all necessary security measures at all levels. Today we are seeing that these claims are not worth a damn.

Japan is a country of high technology. Fully aware of the seismic risk, the Japanese authorities have imposed strict standards for plant construction. Fukushima reactor 1 even included a double safety device, with some generators supplied with fuel and others battery operated. Neither has done any good, because the most sophisticated technology and most stringent safety standards will never provide an absolute guarantee, given the possibility of natural disasters or possible criminal acts (not to mention human error). We can reduce the risks of nuclear power, but we cannot remove them entirely. If it is relatively small but the number of plants increases, as is the case now, the absolute risk may increase.

It is very important to make the point that this risk is unacceptable because it is of human origin, it is preventable, and it is the result of investment decisions made by small circles of people, focused on their profits without proper democratic consultation of the people. To write that “the nuclear accidents (sic) in Japan are far from costing as many lives as the tsunami”, as stated in Belgium’s Le Soir editorial (March 14), is to ignore the qualitative difference between a unavoidable natural disaster and completely preventable technological catastrophe. To add that “like any complex industrial process, energy production from the atom has a substantial risk” (ibid.) also ignores the specifics of nuclear risk, which include the fact that this technology has the potential to wipe the human race off the face of the Earth. We must relentlessly hunt down and expose these types of excuses, which reflect the enormous pressure exerted at all levels by the nuclear industry lobby.

The risk on our own doorstep

If specialists do not hide their utmost concern, policies flaunt their stupidity. Asked on the afternoon of March 12, France's minister of industry Besson said that what is happening in Fukushima is “a serious accident, not a catastrophe”. To justify his own pro-nuclear policy, the British secretary of energy Chris Huhne found nothing better to say than to point out the weakness of the seismic risk in the UK, adding that it would draw lessons from what happens in Japan so that, ultimately, security will be even better.

These same pitiful arguments are used with variations by all governments that have decided either to stay the course with nuclear power (France), have been converted to it (Italy) or are being challenged by the pressure of public anti-nuclear opinion after Chernobyl (Germany, Belgium). Their objective is prevent a new mobilisation of the anti-nuclear movement from torpedoing their ambitious plans for nuclear development on a global scale.

To call these arguments unconvincing would be something of an understatement. In western Europe, in particular, fear is more than justified. In France, a leader in the field of nuclear energy, reactors do not meet seismic standards. According to the Sortir du nucléaire EDF [Electricité de France, the main French power utility] even falsified seismic data to avoid having to recognise and invest at least 1.9 billion euros to bring its reactors up to safety standards. Most recently, the courts dismissed an application for the closure of the Fessenheim (Alsace) plant, the oldest French nuclear reactor, also situated in an area of high seismic risk. In Belgium, the Doel and Tihange plants are designed to withstand earthquakes of magnitude 5.7 to 5.9 on the Richter scale. However, since the 14th century, these regions have experienced three earthquakes with a magnitude greater than 6.

It is also worth noting that there are no longer enough engineers with specialised training in powerplant management, and the nuclear emergency plan only provides for evacuation of an area of 10 kilometres around a plant, which is totally inadequate. The prolongation of the active lives of the facilities is another concern. They are now planned to operate for 50 years, whereas incidents are increasing in plants that are only 20 years' old. Thus, because of their age, 19 of France's reactors have unresolved anomalies in their relief cooling systems. The very systems that failed in Japan.

A social choice

We have to abandon nuclear energy, as completely and as quickly as possible. This is perfectly possible technically, and it should be noted in passing that the efficiency of nuclear power is very poor (two-thirds of the energy is dissipated as heat). The debate is primarily a political one, a debate society must have that ultimately poses a choice of thge sort of civilisation we want. That is the nub of the problem: we must phase out nuclear power and, simultaneously, abandon fossil fuels, the main cause of climate change. In just two generations, renewable energies must become our sole energy source.

However, the transition to renewables requires huge investments in energy-efficient solutions, so energy sources that emit greenhouse gas become more and more supplementary. In practice, energy transition is only possible if energy demand decreases dramatically, at least in developed capitalist countries. In Europe, this decrease should be about 50% by 2050. A reduction of this magnitude is not feasible without a significant reduction in material production and transportation. We must produce and carry less, otherwise the equation will not balance.

Such a transition is impossible under the capitalist system, because the pursuit of profit and the whip of competition inevitably means unbridled growth, i.e. capital accumulation, which inevitably leads to an increasing quantity of commodities, putting increased pressure on resources.

This is why all the responses to the climate challenge presented by capitalists rely on "sorcerer’s apprentice" technology, of which nuclear power is the flagship. The “bluemap” energy scenario of the International Energy Agency is telling in this regard: it proposes to triple the number of nuclear power stations by 2050, which would involve building a new gigawatt powerplant every week. This is madness, pure and simple.

An alternative to this vicious system is more urgent than ever. It requires that we produce less, which means a radical reduction of working hours, and therefore a redistribution of wealth. It also involves collective ownership of energy and finance, because renewables are more expensive than other sources, and will remain so for 20 years at least. It demands planning at all levels, from local to global, in order to balance the rights of the global South to development with the preservation of the ecological balance. It ultimately requires the realisation of the ecosocialist project, of a society producing for the satisfaction of real human needs, democratically determined, in accordance with the rhythms and the functioning of the ecosystem.

Without such an alternative, capitalist growth will always cause more disasters without providing for social needs. That is, ultimately, the terrible lesson of Fukushima.

[Translated by International Viewpoint, from La preuve par Fukushima: pas de nucléaire sans catastrophe, published in La Gauche, March 14, 2011. Daniel Tanuro, a certified agriculturalist and eco-socialist environmentalist, writes for “La gauche”, the monthly journa; of the LCR-SAP, Belgian section of the Fourth International.]

TEPCO's record of damage cover-ups and data falsification

By the Citizen's Nuclear Information Center (Japan)

Image removed. Image removed.

Submitted by Terry Townsend on Mon, 03/21/2011 - 16:08

Permalink

Image removed.
Tokyo Electric Company
Logo
By Norihiko Shirouzo, Phred Dvorak, Yuka Hayashi, and Andrew Morese, The Wall Street Journal, March 19, 2011 
Crucial efforts to tame Japan's crippled nuclear plant were delayed by concerns over damaging valuable power assets and by initial passivity on the part of the government, people familiar with the situation said, offering new insight into the management of the crisis.
Meanwhile, a regulator who was inspecting the Fukushima Daiichi nuclear-power complex when the quake hit offered The Wall Street Journal one of the first eyewitness accounts of the havoc at the site, describing how the temblor took down all communications in the area, greatly complicating the response.
The plant's operator—Tokyo Electric Power Co., or Tepco—considered using seawater from the nearby coast to cool one of its six reactors at least as early as last Saturday morning, the day after the quake struck. But it didn't do so until that evening, after the prime minister ordered it following an explosion at the facility. Tepco didn't begin using seawater at other reactors until Sunday.
Earthquake survivors are stuck in shelters with little food and no electricity, as aid workers are still unable to reach areas of devastation.
Tepco was reluctant to use seawater because it worried about hurting its long-term investment in the complex, say people involved with the efforts. Seawater, which can render a nuclear reactor permanently inoperable, now is at the center of efforts to keep the plant under control.
Tepco "hesitated because it tried to protect its assets," said Akira Omoto, a former Tepco executive and a member of the Japan Atomic Energy Commission, an official advisory body involved in the effort to tame the plant. Both Tepco and government officials had good reason not to use saltwater, Mr. Omoto added. Early on, nuclear fuel rods were still under cooling water and undamaged, he said, adding, "it's understandable because injecting seawater into the fuel vessel renders it unusable."
Tepco spokesman Hiro Hasegawa said the company, "taking the safety of the whole plant into consideration, was trying to judge the appropriate timing to use seawater."
"This disaster is 60% man-made," said one government official. "They failed in their initial response. It's like Tepco dropped and lost a 100 yen coin while trying to pick up a 10 yen coin."
Government efforts also were plagued with delays. Japan's military, the Self-Defense Forces, didn't participate in cool-down efforts in a big way until Wednesday, after four of the six reactors had suffered damage and the remaining two showed signs of heating as well. A military spokesman said forces didn't move in because they weren't requested by Tepco.  A Tepco spokesman declined to comment on the issue specifically, saying in general the company is in contact with the government.
Even a swifter response would have faced grave challenges. The quake and the tsunami cut off the plant from nearly all communications in the crucial early hours, an eyewitness told the Journal.
Kazuma Yokota, a safety inspector with Japan's Nuclear and Industrial Safety Agency, or NISA, was at the plant at the time. He ducked under a desk as the temblor struck with a force that cracked the walls, he recalled. He then moved to his monitoring office, a 15-minute drive away. "There was no power, no phone, no fax, no Internet," he said. He wasn't able to get a backup generator working until that night.
On Friday, NISA raised the severity ranking of the crisis to five on an international severity scale, from four, putting it at the same level as 1979's Three Mile Island incident in the U.S.
Government and Tepco officials reported only modest gains Friday in controlling the plant. They said they believed that fire trucks deployed on one troubled reactor managed to hit one pool of radioactive waste. It was unclear how effective the spraying was. National broadcaster NHK reported Saturday afternoon that the fire-truck spraying had resumed.

The officials said they believed they could restore power to some troubled units over the weekend, which could help cool them. Radiation levels at the site were stable, but still elevated.
International observers say delays and chaos are inevitable because the situation is unprecedented. Yukiya Amano, chief of the International Atomic Energy Agency, who arrived in Japan on Friday, said Three Mile Island also took time to
The March 11 earthquake disconnected the plant from the power grid, and the tsunami wiped out its backup generators.
Mr. Yokota, who heads the NISA office that monitors the plant, was conducting a quarterly safety inspection when the ground began rumbling, then shaking. File cabinets and computers toppled around him.
After the tsunami passed, he grabbed a taxi to the NISA office in neighboring Okuma, which doubled as an emergency-response center. The center was cut off from both NISA headquarters in Tokyo and the Fukushima Daiichi complex.
Word of trouble at the No. 1 reactor, the oldest of the plant's six, wasn't widely known until early Saturday morning, when its fuel rods began to heat—even though it had automatically shut down. At a 6 a.m. media briefing, a Tepco spokesman said seawater was one cooling option.
The temperature kept rising, producing hydrogen gas that caused an explosion at 3:36 p.m. Prime Minister Naoto Kan ordered seawater to be injected, which happened at 8:20 p.m.
By early Sunday, cooling functions at the No. 3 reactor were lost. Tepco tried to cool the reactor with fresh water, but it was forced to switch to seawater in the afternoon. It exploded Monday morning, likely damaging the containment structure and allowing radiation to leak.
Authorities apparently were unaware that water had stopped going into the cooling system of the No. 2 reactor. They began using seawater Monday evening, but the loss of its cooling system led to an explosion early Tuesday.
Mr. Yokota and other NISA staffers took doses of potassium iodide, which protects the thyroid gland from radiation. The emergency-response center had an alarm that sounded when radiation levels hit 100 microsieverts, prompting staffers to don face masks. By Wednesday, when the staff moved to a safer location farther away, the alarm was going off constantly, recalled Mr. Yokota.
Japan's Self-Defense forces showed up that day, though a spokesman said some of their personnel and equipment waited 15 miles away. "We have to wait for Tepco to come to us and request help," said Tetsuya Kono, a ministry of defense spokesman.